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Producing Products of Two Sets of Permutations 

 in Lexicographic Order 

Jerry Bryan – 4 April 2023 

 

I have been creating programs to investigate the mathematics of Rubik’s Cube since 1985. 

At various times since then, I have produced some rather long and convoluted descriptions 

of my methods. This document will be an attempt to clarify and shorten the description of 

one key part of my methods. In particular, this document will describe my method of 

producing the product of two sets of permutations in lexicographic order. As a consequence 

of the lexicographic ordering, it is possible to eliminate duplicate permutations and to 

count the number of unique permutations without storing any of the products in memory. 

Let us suppose that we have two sets of permutation Σ = {𝜎1, 𝜎2} and Τ = {𝜏1,  𝜏2,  𝜏3}. 

Forming all possible products of Σ and Τ will produce a list of six products. 

ΣΤ = 𝜎1𝜏1,  𝜎1𝜏2,  𝜎1𝜏3, 𝜎2𝜏1,  𝜎2𝜏2,  𝜎2𝜏3 

We make two observations about this list of products. The first observation is that we must 

treat the list as a sequence rather than as a set because the list may contain duplicate 

permutations. For example, it is possible that 𝜎1𝜏3 is the same permutation as 𝜎2𝜏2. The 

second observation is that simply forming the products by looping through the sets Σ and Τ 

will not produce the products in lexicographic order. We will need to form the products in 

some other way in order to produce them in lexicographic order. 

There was a cube-lovers mailing list which began in July 1980 and continued until January 

2000. My method borrows from and builds upon two messages that were submitted to that 

mailing list. 

The first message was from Alan Bawden. It described an algorithm which has become 

known as the Shamir Algorithm after its originator Adi Shamir. Bawden was reporting on 

the algorithm based on a lecture by Shamir. The algorithm provided a way to solve cube 

positions one at a time using very little computer memory during a timeframe when 

computers had very little memory. The message in the cube-lovers archives may be found at 

the following URL: 

https://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Alan_Bawden__Sham

ir's_talk_really_was_about_how_to_solve_the_cube!.html 

Contained within the Shamir Algorithm was a method to produce products of permutations 

in lexicographic order. If you think of the method to solve a position as a theorem, then the 

method to produce products of permutations in lexicographic order might be considered a 

lemma. Lexicographic ordering of the product of two sets of permutations does not 

necessarily solve any problems on its own. However, lexicographic ordering of products can 

be useful as a part of various algorithms that actually do solve certain problems. The idea of 

https://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Alan_Bawden__Shamir's_talk_really_was_about_how_to_solve_the_cube!.html
https://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/Alan_Bawden__Shamir's_talk_really_was_about_how_to_solve_the_cube!.html
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producing products of two sets of permutations in lexicographic order is therefore a very 

powerful idea. 

Bawden’s message about the Shamir Algorithm did not reflect any computer code that 

implemented the algorithm. The algorithm was only described as a concept. In addition, the 

message only described how to produce the product Σ𝜏 in lexicographic order for a 

sequence of permutations Σ and for any particular permutation 𝜏 𝜖 Τ. The process of 

combining the sequences Σ𝜏1, Σ𝜏2, … which are each in lexicographic order into a combined 

sequence that is in lexicographic order was left largely as an exercise for the reader. 

The article did suggest using a queue of items of the form Σ𝜏𝑖 with one item on the queue 

for each τ𝑖  𝜖 Τ. The queue would be ordered by the current 𝜎𝜏 from the lexicographically 

ordered list Σ𝜏𝑖. The first element in the queue would always be the first product currently 

in the queue in lexicographic order. To get to the next element, the first element would be 

popped from the queue and would be replaced in the queue by the next 𝜎𝜏 for the current 

Σ𝜏𝑖.  

Using a queue to order the various Σ𝜏𝑖 items is not very practical when both Σ and Τ might 

contain millions or even billions of permutations. Too much time is spent popping one 

element off the queue and inserting the element back into the queue in a different place. 

However, the Shamir Algorithm was developed at a time when computer memories were so 

small that it could be challenging to store even a few thousand permutations. My method 

builds on Shamir’s original suggestion for producing products of permutations in 

lexicographic order by providing an alternative to using a queue. This alternative does scale 

up fairly well and is practical to use when both Σ and Τ contain very large numbers of 

permutations. 

The second message described an actual computer code which implemented the Shamir 

Algorithm. The message was posted by David Moews who was the author of the code. The 

message in the cube-lovers archives may be found at the following URL: 

https://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers//David_Moews__Imp

lementing_Shamir's_method.html  

The message from Moews included more details about the Shamir Algorithm than had been 

posted before. It also included an improved method of combining the various Σ𝜏𝑖 sequences 

into a single list of permutations in lexicographic order. Namely, Moews merged all the 

various Σ𝜏𝑖 sequences using Donald Knuth’s Tournament of Losers Algorithm. My method 

builds further on the idea of producing products of permutations in lexicographic order by 

eliminating entirely the need to merge the various Σ𝜏𝑖 sequences. Instead, both Σ and Τ are 

partitioned in a breadth first fashion that produces elements of ΣΤ in lexicographic order 

without explicitly forming separate  Σ𝜏𝑖 sequences that must then be merged together. 

My model for lexicographic ordering is based on representing permutations from words of 

an alphabet. For example, suppose our alphabet were 𝜔 = a,b,c. Then each possible word 

that is a permutation would contain exactly 3 letters, each possible word that is a 

https://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/David_Moews__Implementing_Shamir's_method.html
https://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers/David_Moews__Implementing_Shamir's_method.html
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permutation would contain every letter in the alphabet, and no letter in the alphabet would 

be repeated within a word that is a permutation. The list of possible words that are 

permutations on the alphabet 𝜔 = a,b,c are as follows. 

abc, acb, bac, bca, cab, cba 

The lexicographic ordering is as if the words were ordered using the standard Latin 

alphabet from a to z. 

My method to produce permutations in lexicographic tree does not actually attempt to 

produce the product abc followed by the product acb followed by the product bac, etc. 

Rather, the method walks a lexicographic tree of the possible permutations that may be the 

product of any 𝜎𝑖𝜏𝑗. 

The easiest way to describe such a lexicographic tree is to show a picture of it. To that end, 

we will describe a notation for words from the alphabet when not all of the letters are 

known. We represent any unknown letter with a hyphen. For example, if the first two 

letters of a word are not known and the third letter is known to be b, we can write the word 

as --b. If the first and last letters of the word are not known and the second letter is known 

to be c, we can write the word as -c-.  

With that representation in mind, here is a lexicographic tree for all the words abc, acb, 

bac, bca, cab, cba when the words are listed in lexicographic order. 

Figure 1. 

Lexicographic Tree of 𝝎 = a,b,c 

 

 

An immediate observation is that the last level of the tree is not necessary. For example, if 

we know that the first two letters of a word are ab then we know the third letter is c. 

Therefore, we define a lexicographic walk of the tree to be a depth first walk of the tree for 

level 0, level 1, and level 2 while omitting to walk at level 3. The child nodes to visit from 

each level are chosen in lexicographic order. 
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To make the lexicographic walk very explicit, the following list of nodes shows the order in 

which the nodes are visited during a lexicographic walk of this tree. Many of the nodes are 

visited more than one time due to backtracking. We define 𝜆 as the sequence of nodes 

visited during a lexicographic walk where 𝜆  = ---, a--, ab-, a--, ac-, a--, ---, and so forth. 

Figure 2 

Lexicographic Walk of 𝝎 = a,b,c 

tracking the path of λ = tree node 

 

   Action           𝜆 

1.  start           --- 

2.  down to         a-- 

3.  down to         ab- 

4.  backtrack to    a-- 

5.  down to         ac- 

6.  backtrack to    a-- 

7.  backtrack to    --- 

8.  down to         b-- 

9.  down to         ba- 

10. backtrack to    b-- 

11. down to         bc- 

12. backtrack to    b-- 

13. backtrack to    --- 

14. down to         c-- 

15. down to         ca- 

16. backtrack to    c-- 

17. down to         cb- 

18. backtrack to    c-- 

19. backtrack to    --- 

20. done                

 

With this lexicographic walk in mind, we now can describe our method as producing the 

products in ΣΤ via a lexicographic walk rather than describing our method as producing 

products ΣΤ in lexicographic order. The ultimate effect is the same either way. What is going 

on behind the curtain is actually a depth first walk of the tree which has the effect of being a 

lexicographic walk of the tree. We produce permutations that are elements of ΣΤ via the 

equation ΣΤ = λ where 𝜆 takes on each value in the lexicographic walk in turn. 

For the most part it is λ that is taking the lead and ΣΤ is just following. The exception is 

when there is no σ and τ where the letters of the product στ match the current λ. In that 

case, λ follows ΣΤ rather than leading ΣΤ. The effect is that λ backtracks and as a result of 
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the backtracking it skips ahead. For example, if at step #2 of our sample lexicographic walk 

there is no σ and τ where the first letter of the product στ is the letter a, λ would skip ahead 

to step #7 and the process would continue where the first letter of the product στ would try 

to be the letter b. 

For that reason, our equation ΣΤ = λ might better be written as the intersection ΣΤ ∩ λ. 

When the intersection is not null the method proceeds to the next node in the lexicographic 

walk λ. When the intersection is null, the method backtracks which has the effect of 

skipping forward in the lexicographic walk λ. 

Thus far we have dealt with a permutation simply as a reordering of the letters in words 

made from the 3 letters  in the alphabet 𝜔 = a, b, c. We now need to treat a permutation as a 

bijection on a set in order to be able to define the product of two permutations. That is, we 

need to treat a permutation as a function or mapping which is one-to-one and onto, and for 

which the domain and range are the same set. We take the domain and range to be the 

alphabet  ω =  a, b, c. 

With this definition of a permutation in mind, exactly what do we mean by a permutation 

such as cab? We take cab to mean that a as the first letter of the alphabet 𝜔 is mapped to c, 

b as the second letter of the alphabet 𝜔 is mapped to a, and c as the third letter of the 

alphabet 𝜔 is mapped to b. More generally, suppose we have the permutation 𝛼𝛽𝛾 on the 

alphabet ω = a, b, c where 𝛼, 𝛽 and 𝛾 are unique letters from 𝜔. We take 𝛼𝛽𝛾 to mean that a 

as the first letter of the alphabet 𝜔 is mapped to 𝛼, b as the second letter of the alphabet 𝜔 

is mapped to 𝛽, and c as the third letter of the alphabet 𝜔 is mapped to 𝛾. 

For example, the permutation σ = bca is defined as  a → b, b → c, c → a and the 

permutation τ = acb is defined as a → a, b → c, c → b. Therefore, the product στ is the 

product (a → b, b → c, c → a) × (a → a, b → c, c → b) which is equal to cba. 

We are now prepared to have ΣΤ follow λ. Suppose we are at step #14 of the lexicographic 

walk where λ = c--. We need to find σ and τ such that στ = c--. Remembering that we 

must have ΣΤ = λ, there are 3 possible choices we can make for Σ and Τ that are solutions. 

Figure 3 

Choices for Σ and Τ 

 
Σ    ×  Τ    =  ΣΤ 

 

a--  ×  c--  =  c-- 

b--  ×  -c-  =  c-- 

c--  ×  --c  =  c-- 

We have arrived at the essential core of our method to produce products of permutations in 

a way that follows a lexicographic walk. While λ is making a depth first walk, Σ and Τ are 

making their own respective walks at the same time. The walks for Σ and Τ must be breadth 
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first because we must process the product a-- × c-- at the same time we process the 

product   b-- × -c- at the same time we process the product c-- × --c = c--. We 

cannot come back to process the separate products at the same level of the walk later 

because that would put the values for λ out of order. 

The computer code to implement our method is partitioning Σ and Τ. The code includes a 

performance enhancement that makes it easier to partition Τ. In addition to improving 

performance, the performance enhancement may perhaps make the method itself easier to 

understand. The performance enhancement takes advantage of the inverse identities such 

as the following. Using the inverses serves to place the letters of interest all in the same 

location within a word in Τ. 

Figure 4 

Inverse Identities 
 

(c--)-1 = --a 

(-c-)-1 = --b 

(--c)-1 = --c 

Armed with these inverse identities, we can rewrite the values for Σ, Τ, and ΣΤ at step #14 

of the lexicographic walk as follows. 

Figure 5 

Step #14 of the Lexicographic Walk 

 
Σ    ×    Τ     =  ΣΤ 

 

a--  ×  (--a)-1  =  c-- 

b--  ×  (--b)-1  =  c-- 

c--  ×  (--c)-1  =  c-- 

The form of the lexicographic walk as portrayed in Figure #5 works because the 

permutations --a and --b and --c may be taken to be τ-1 values from the set Τ−1, where 

Τ−1 is the set of all inverses of the set Τ. When we take the inverses of the τ-1 values, we are 

back to having τ values. Therefore, to find permutations σ and τ whose product is c--, the 

method needs only to find pairs of permutations σ and τ where the first letter of σ matches 

the third letter of τ-1. That is the performance enhancement of which we speak. It is much 

more efficient to find matching letters in fixed locations in words than it is, for example, to 

find the letter c no matter where it appears in a word. To facilitate processing by inverses, 

the program stores all permutations as ordered pairs of each permutation and its inverse. 

By storing the inverses, they do not need to be calculated over and over again. 

I sometimes joke that the number of products of permutations that my programs produce is 

actually zero. That’s because my programs never calculate products. Instead, they match Σ 

and Τ in such a way that the desired products would be produced if they were actually 
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calculated. Therefore, the matching serves the de facto function of forming the products 

without actually needing to form the products. 

Proceeding from step #14 to step #15 of the lexicographic walk for λ, the value of λ is 

ca- and the values for Σ, Τ, and ΣΤ would be as follows. 

 

Figure 6 

Step #15 of the Lexicographic Walk 

 
Σ    ×    Τ     =  ΣΤ 

 

ab-  ×  (b-a)-1  =  ca- 

ac-  ×  (c-a)-1  =  ca- 

 

ba-  ×  (a-b)-1  =  ca- 

bc-  ×  (c-b)-1  =  ca- 

 

ca-  ×  (a-c)-1  =  ca- 

 cb-  ×  (b-c)-1  =  ca-. 

We need to dig a little more deeply into how the lexicographic walk makes a transition from 

Step #14 in Figure 5 to Step #15 in Figure 6. We have already described how the walk 

would backtrack if there were no matches at all between the first letter of Σ and the third 

letter of Τ-1. If there were a match, there could be matches on the letter a or the letter b or 

the letter c or some combination. Let’s suppose there was a match on the letter b and not 

on the letter a or the letter c. In that case,  the status at Step #14 would be reduced to the 

following. 

Figure 7 

Step #14 of the Lexicographic Walk 

without ΣΤ matches on the letters a or c 

 
Σ    ×    Τ     =  ΣΤ 

 

b--  ×  (--b)-1  =  c--  
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Under these circumstances, the only matches brought forward would be the matches for 

the letter b. Therefore, the status at Step #15 of the lexicography walk would be the 

following. 

Figure 8 

Step #15 of the Lexicographic Walk 

without ΣΤ matches brought forward on the letters a or c 

as the first letter of Σ or the third letter of Τ-1 

 
Σ    ×    Τ     =  ΣΤ 

 

ba-  ×  (a-b)-1  =  ca- 

bc-  ×  (c-b)-1  =  ca- 

There is a notational shortcut that greatly simplifies a description of the processing that 

takes place for Σ and Τ during the process of a lexicographic walk by λ. We represent the 

first letter of Σ and the matching letter in Τ-1 by  α and the second letter of Σ and the 

matching letter in Τ-1 by  β. It is understood that α is to be replaced in turn by each of a, b 

and c. It is understood that β is to be replaced in turnby each of the letters not assigned to 

α. 

Σ and Τ are still processed breadth first, but the breadth first aspect of the processing is 

hidden in the notation. Additional Greek letters would be used in the same fashion for an 

alphabet of more than 3 letters. 

Figure 9 

Step #14 of the Lexicographic Walk 

with and without shortcut notation 

 
Σ    ×    Τ     =  ΣΤ 

 

without shortcut notation 
a--  ×  (--a)-1  =  c-- 

b--  ×  (--b)-1  =  c-- 

c--  ×  (--c)-1  =  c-- 

 

with shortcut notation 
α--  ×  (--α)-1  =  c-- 
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Figure 10 

Step #15 of the Lexicographic Walk 

with and without shortcut notation 

 
Σ    ×    Τ     =  ΣΤ 

 

without shortcut notation 
ab-  ×  (b-a)-1  =  ca- 

ac-  ×  (c-a)-1  =  ca- 

ba-  ×  (a-b)-1  =  ca- 

bc-  ×  (c-b)-1  =  ca- 

ca-  ×  (a-c)-1  =  ca- 

cb-  ×  (b-c)-1  =  ca- 

 

with shortcut notation 
αβ-  ×  (β-α)-1  =  ca- 

The shortcut notation greatly facilitates an understanding of the computer code that 

implements this method to produce products of permutations in lexicographic order. The 

corners of Rubik’s Cube are represented by words from an alphabet of 24 letters from a to 

x. The edges of Rubik’s Cube are represented by words from second alphabet of 24 letters 

from a to x. Therefore, the actual lexicographic walks conducted by the computer code are 

vastly larger than the simple example in this document using an alphabet of only 3 letters. 

The maximum number of permutations in Σ and Τ that the computer code can handle on a 

typical desktop class computer is about 108. Therefore, the maximum number of products 

of permutations the computer code can handle on a typical desktop class computer is about 

1016. That requires a much longer lexicographic walk than the simple one displayed in 

Figure 2. 

That being said, we will conclude this document by repeating the short lexicographic walk 

from Figure 2. Except this time, we will use the shortcut notation to describe the behavior 

of Σ and Τ along with the behavior of λ. 
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Figure 11 

Lexicographic Walk of ω= a,b,c 

tracking the path of Σ,  Τ, and λ 

 

 Action           λ    ∩     Σ  ×  Τ 

1.  start           ---   ∩    --- × ----1 

2.  down to         a--   ∩    α-- × α---1 

3.  down to         ab-   ∩    αβ- × αβ--1 

4.  backtrack to    a--   ∩    α-- × α---1 

5.  down to         ac-   ∩    αβ- × α-β-1 

6.  backtrack to    a--   ∩    α-- × α---1 

7.  backtrack to    ---   ∩    --- × ----1 

8.  down to         b--   ∩    α-- × -α--1 

9.  down to         ba-   ∩    αβ- × βα--1 

10. backtrack to    b--   ∩    α-- × -α--1 

11. down to         bc    ∩    αβ- × -αβ-1 

12. backtrack to    b--   ∩    α-- × -α--1 

13. backtrack to    ---   ∩    --- × ----1 

14. down to         c--   ∩    α-- × --α-1 

15. down to         ca-   ∩    αβ- × β-α-1 

16. backtrack to    c--   ∩    α-- × --α-1 

17. down to         cb-   ∩    αβ- × -βα-1 

18. backtrack to    c--   ∩    α-- × --α-1 

19. backtrack to    ---   ∩    --- × ----1 

20. done                                  

 

Added 7 April 2023. Despite this document including the word “lexicographic” in its title, 

the walk portrayed in Figure 11 does not actually need to be lexicographic in order to 

achieve its desired effect of creating a walk that visits each possible product of 

permutations at most one time. For example, we can think of the walk as of containing 

three sub-walks: steps 2 through 7, steps 8 through 13, and steps 14 through 19. We could 

perform sub-walk 8 through 13 first, sub-walk 14 through 19 second, and sub-walk 2 

through 7 last. If so, the new walk would still allow us to visit produce all the products of 

permutations in Σ and Τ in such a way that we could identify and eliminate products that 

were duplicate without needing to store any of the products in memory. Similarly, steps 9 

through 10 and steps 11 through 12 are sub-walks that could be formed in either order. 

Such a non-lexicographic walk can be useful when distributing a large Rubik’s Cube 

problem across multiple processor cores on a single machine or across multiple machines. 

For example, a sub-walk such as steps  2 through 7 could be processed on one computer, a 

sub-walk such as steps 8 through 13 could be processed on a second computer, and a sub-
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walk such as steps 14 through 19 could be processed on a third computer. The sub-walks 

on the separate computers would be much longer than the very short sub-walks in this 

example. Nevertheless, the concept is the same with very long sub-walks as with short sub-

walks. 


